
1

Socket Programming

Dr. Yeali S. Sun

National Taiwan University

2

Client Application

Host With TCP/IP

Server Application

Host With TCP/IP

router

router router router router

router

LAN LAN

WAN

Client-Server Communication
Paradigm

3

Application Interface to
Protocols

4

Network Programming

 Network applications

use TCP/IP to

communicate with

each other.

 TCP/IP protocol
software resides
in the computer’s
operating system.

 An application
program interacts
with the operating
system to request
service.

Application Layer

Transport Layer
(TCP, UDP)

Network Layer
(IP)

Data Link Layer,
Physical Layer
(LAN, WAN,

Wireless, 3.5G)

User

process

Application

details

Kernel

Communication

details

5

TCP/IP Network Programming
APIs

 In practice, a few APIs exist.

 Berkeley UNIX Sockets
 Initiated by ARPA (Advanced Research Project Agency) in

early 1980s

 Done by the University of California, Berkeley

 Included in release 4.1 of the Berkeley Software Distribution (bsd)

 Has been adopted by many systems, including Linux (a de facto
standard)

 Known as socket API (or socket interface, sockets.)

 Microsoft Windows Sockets
 A variant of socket API

 AT&T TLI (Transport Layer Interface)
 for System V UNIX

6

The Socket Interface

7

System Calls

 System calls are mechanisms that OS uses to transfer control
between application and the operating system procedures.

 To a programmer, system calls look and act like function calls.

 When received a system call, OS directs the call to an internal
procedure that performs the requested operation.

Operating System Kernel
(Containing TCP/IP Protocol Software)

application1 application2 application3

Applications in
user address
space

System call
interface

Protocol
software in
system address
space

System functions (called by applications)

8

The basic I/O operations in Linux

 An application program calls
open to initiate input or output.

 The system returns an integer
called a file descriptor that
the application uses in further
I/O operations

 Three arguments

 the name of a file or device to
open

 A set of bit flags that controls
special cases (e.g., create one if
not exists)

 An access mode (e.g., read, write,
etc.)

 Example

int desc;

desc =
open(“filename”,
O_RDWR, 0);

read (desc, buffer,
128); //bytes

close (desc);

9

Socket API (1/2)

 Socket API is a set of functions and the parameters
that each function requires and the semantics of the
operation it performs.

 Follow conventional I/O primitives notation and
semantics
 Use basic I/O functions whenever possible

 Add additional functions for those operations that cannot be expressed

conveniently

 Allow multiple families of protocols
 E.g., TCP/IP protocol family – PF_INET

Socket API (2/2)

10

Web server 80)

FTP server (20,21)

Telnet server (23)

Mail Server (25)

11

Socket API: Functionality

 Allocate local resources
for communication

 Specify local and remote
communication
endpoints

 Initiate a connect (client
side)

 Send a datagram (client side)

 Wait for an incoming
connection (server side)

 Send or receive data

 Determine when data arrives

 Generate urgent data

 Handle incoming urgent
data

 Terminate a connection
gracefully

 Handle connection
termination from the remote
site

 Abort communication

 Handle error conditions or a
connection abort

 Release local resource
when communication
finishes.

12

The basic I/O operations in Linux

open Prepare a device or a file for input and output operations

close Terminate use of a previously opened device or file

read Obtain data from an input device or file, and place it in

the application program’s memory

write Transmit data from the application program’s memory to

an output device or file

lseek Move to a specific position in a file or device (e.g., disk)

ioctl Control a device or the software used to access it (e.g.,

specify buffer size or change character set mapping)

13

Sockets for Network
Communication

 OS implements file descriptors
as an array of pointers to internal
data structures.

 OS maintains a separate file
descriptor table for each process.

 Socket descriptor

 When a process opens a
socket, OS places a pointer to
the internal data structure for
that socket.

 It is in the same process’
descriptor table as file
descriptors.

 OS returns the table index (i.e.
the socket descriptor) to the
calling program.

Descriptor
table

(one per
process)

Internal data structure

for file 0

Internal data structure

for file 1

Operating
System

0:

1:

2:

3:

14

Summary of Socket Calls (1/2)

socket Create a descriptor for use in network communication

connect Connect to a remote peer (client)

send

(write)

Send outgoing data across a TCP connection or a

UDP datagram

recv

(read)

Acquire incoming data from a TCP connection or the

next incoming UDP datagram

close Terminate comm. and de-allocate a descriptor

bind Bind a local IP addr. and protocol port to a socket

listen Place the socket in passive mode and set the # of

incoming TCP conn. the system will enqueue (server)

accept Accept the next incoming conn. (server)

15

Summary of Socket Calls (2/2)

recvmsg Receive next incoming UDP datagram (variation

of recv).

recvfrom Receive next incoming UDP datagram and record

its source endpoint address

sendmsg Send an outgoing UDP datagram

sendto Send an outgoing UDP datagram, usually to a

prerecorded endpoint address

shutdown Terminate a TCP conn. in one or both directions

getpeerna

me

After a conn. arrives, obtain the remote machine’s

endpoint address from a socket

getsockopt Obtain the current options for a socket

setsockopt Change the options for a socket

Two essential types of sockets

 SOCK_STREAM

 TCP

 connection-oriented

 Reliable delivery

 in-order guaranteed

 bidirectional

 SOCK_DGRAM

 UDP

 no notion of

“connection”-

 app indicated dest. for

each packet

 unreliable delivery

 no order guarantees

 can send or receive

16

Sequence of calls made by a “client” and a
“server” using TCP

17

1

2

3

4

5
6

7 8

9 10.1

11
10.2

12

Sequence of calls made by a “client” and a
“server” using UDP

18

1

2

3

4 5

6 7

8.1 8.2

19

System data structures for socket()

 socket(): create a new

socket

 A new data structure is

created by OS to hold

the info. for

communication

 A new descriptor table

entry is created to

contain a pointer to the

data structure.

family: PF_INET

service: SOCK_STREAM

local IP:

remote IP:

local port:

data structure
for a socket

remote port:

Operating
System

20

Making a socket active or passive

Server

 Configure a socket to wait for an incoming

connection

 The socket is said to be passive

Client

 Configure a socket to initiate a connection to

server

 The socket is said to be active

21

Predefined symbolic constants and
data structures for socket calls

SOCK_DGRAM, SOCK_STREAM

#include <sys/types.h>

#include <sys/socket.h>

22

Specifying an endpoint address

Address family

 e.g., AF_INET (PF_INET)

Each protocol family defines its own

representation of its endpoint address

23

struct sockaddr_in { /* struct to hold an address */

 u_char sin_len; /* total length */

 u_short sin_family; /* type of address: 2-byte */

 u_short sin_port; /* protocol port number */

 struct in_addr sin_addr; /* IP address (declared to be */

 /* u_long on some systems) */

 char sin_zero[8]; /* unused (set to zero) */

};

TCP/IP endpoint address

24

Algorithms for Client
Software Design

25

Introduction

Client program

How to initiate communication?

Select TCP/IP protocol and address families

How to use TCP or UDP as the transport layer

protocol?

How to contact a server?

How to use socket calls to interact with the

protocols?

26

Algorithm: A “TCP Client” to form a
connection to a server for communication

1. Find the IP address and protocol port number of the

server with which communication is desired

2. Allocate a socket

3. Specify that the connection needs an arbitrary, unused protocol

port on the local machine, and allow TCP to choose one

4. Connect the socket to the server

5. Communication with the server using the application-level

protocol (this usually involves sending requests and awaiting

replies)

6. Close the connection

27

Step 1: Identify the location of a
server

 Have server’s domain name or IP address as a
constant when the program is compiled
 inflexible

 Find the server when the program is invoked
 as an input argument

 from stable storage (e.g., a file), or

 using a separate protocol to find a server (e.g., multicast,
broadcast, etc)

Make the client program more general

Make it possible to change server locations

Step 1-A: Look up a domain name

 socketaddr_in requires a
32-bit IP address in binary

 Socket APIs that convent a
dotted decimal address
(1.2.3.4) into a 32-bit IP
address in binary

 inet_addr
• Take an ASCII string address

and return the equivalent IP
address in binary

 gethostbyname
• Take an ASCII string address

and return the address of a
hostent structure

28

struct sockaddr_in {

 u_char sin_len;

 u_short sin_family;

 u_short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

29

gethostbyname()

 Lists of host names and aliases (a host may have more

than one interface)

struct hostent {

 char *h_name; /* official host name */

 char **h_aliases; /* other aliases */

 int h_addrtype; /* address type */

 int h_length; /* address length */

 char **h_addr_list; /* list of address */

};

#define h_addr h_addr_list[0] /* for backward compatibility

30

struct hostent *hptr;

char *examplename = “merlin.cs.purdue.edu”;

If (hptr = gethostbyname(examplename)) {

 /* IP address is now in hptr->h_addr */

} else {

 /* error in name – handle it */

}

Look up a domain name: sample code

struct hostent {

 char *h_name; /* official host name */

 char **h_aliases; /* other aliases */

 int h_addrtype; /* address type */

 int h_length; /* address length */

 char **h_addr_list; /* list of address */

}; // #define h_addr h_addr_list[0] /* for backward compatibility

31

Step 1-B: Look up a well-known port
by name

Look up the protocol port for a service

 getservbyname(string service, string protocol)

struct servent {
 char *s_name; /* official service name */
 char **s_aliases; /* other aliases */
 int s_port; /* port for this service */
 char *s_proto; /* protocol to use */
};

32

struct servent *sptr;

char *examplename = “merlin.cs.purdue.edu”;

If (sptr = getservbyname(“smtp”, “tcp”)) {

 /* port number is now in sptr->s_port */

} else {

 /* error in name – handle it */

}

Step 1-B: Look up a well-known port
by name: sample code

struct servent {
 char *s_name; /* official service name */
 char **s_aliases; /* other aliases */
 int s_port; /* port for this service */
 char *s_proto; /* protocol to use */
};

33

Port number and network byte
order

getservbyname() returns the protocol port in

network byte order

 It is in the form for use in sockaddr_in

Network byte order vs. byte order in local

machine(!)

34

Step 1-C: Look up a protocol by
name

A protocol name is mapped to an integer

constant (e.g., TCP:6, UDP:17)

getprotobyname()

struct protoent {
 char *p_name; /* official protocol name */
 char **p_aliases; /* list of aliases allowed */
 int *p_proto; /* official protocol number*/
};

35

struct protoent *pptr;

If (pptr = getprotobyname(“udp”)) {

 /* official protocol number is now in pptr->p_proto */

} else {

 /* error in name – handle it */

}

Step 1-C: Look up a protocol by name:
sample code

36

Step 2: Allocate a Socket

#include <sys/types.h>

#include <sys/socket.h>

int sd; /* socket descriptor*/

sd = socket(PF_INET, SOCK_STREAM, 0);

37

Step 3: Choose a local protocol
port

The socket call allows an application to leave

the local IP address unfilled

TCP/IP software will choose a local one

automatically at the time the client connects to

a server.

38

Step 4: Connect the socket to the
server

 connect()

 Allow a client to initiate a connection

 Return value: 0: success; 1: failure

retcode = connect(sd, remaddr, remaddrlen);
 sd: socket descriptor (socket())

 remaddr: remote endpoint of the connection of type

sockaddr_in

 remaddrlen: in bytes

39

connect()

Performs four tasks

Test to ensure the specified socket is valid and
has not been connected.

Fills in the remote endpoint address in
the socket

Choose a local endpoint address for the
connection if not having one

Initiate a connection and return a value
whether succeeded or not

40

Step 5: Communicating with server using
TCP: sample code

#define BLEN 120 /* buffer length to use */
char *req = “request for some port”;
char buf[BLEN]; /* buffer for answer */
char *bptr; /* pointer to buffer */
int n; /* number of bytes read */
int buflen; /* space left in buffer */

bptr = buf;
buflen = BLEN;

send(sd, req, strlen(req), 0); /* Send request */

/* read response (may come in many pieces) */

while ((n = recv(sd, bptr, buflen, 0)) > 0) {
 bptr += n;
 buflen -= n;
}

41

Receiving a response from a TCP
connection

TCP is stream-oriented

 deliver the sequence of bytes that the sender

transmits;

 Do not guarantee to deliver to receiver in the same

grouping as they were sent.

TCP may choose to accumulate many bytes in

its output buffer before sending a segment.

42

Step 6: Closing a TCP connection

 close()
 Terminate the connection gracefully and deallocate the socket.

 TCP is a two-way communication

 Terminate a connection requires coordination among the client and the
server

 Partial close - shut down a TCP connection in one direction

 errcode = shutdown(sd, direction)
 direction: an integer (0: no further input is allowed; 1: no further

output is allowd; 2: shutdown in both directions)

 Client finishes sending may use shutdown()

 The server receives an end-of-file signal

 After sending the last response, it can close the connection.

43

Algorithm: A “UDP Client” to form a
connection to a Server for communication

1. Find the IP address and protocol port number of the
server with which communication is desired

2. Allocate a socket

3. Choose an arbitrary, unused protocol port on the local
machine, or allow client to choose one

4. Specify the server to which message must be sent

5. Communication with the server using the application-
level protocol (this usually involves sending requests
and awaiting replies)

6. Close the connection

44

Connected and unconnected UDP
sockets

 A client application can use a UDP socket in one of two basic
modes: connected and unconnected.

 Connected mode

 The client calls connect() to specify a remote endpoint address

 Client can send and receive messages without specifying the remote
address repeatedly.

 Suitable for client app that interacts with only one server at a time

 Unconnected mode
 Does not connect the socket to a specific remote endpoint

 It specifies the remote destination each time it sends a
message

 Suitable for interacting with multiple servers

45

Communicating with a server with
UDP

 connect() with SOCK_DGRAM

 Do not test validity or reachability of the remote endpoint address

 It records the remote endpoint info in the socket data structure

 UDP

 message transfer

 send(), recv()

 close()
 Do not inform the remote endpoint

 shutdown()

 For a connected UDP

 Stop further transmission in a given direction

 Again, no control message is sent to the other side.

46

Discussion

Client applications using UDP must handle

reliability functions themselves if needed.

Reliability techniques, e.g.,

 Packet sequencing

 Acknowledgements

 Timeouts

 Retransmission

47

Example Client Software

48

A Procedure to Form Connections

/* connectsock.c - connectsock */

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#include <string.h>

#include <stdlib.h>

#ifndef INADDR_NONE

#define INADDR_NONE 0xffffffff

#endif /* INADDR_NONE */

extern int errno;

int errexit (const char *format, …);

49

/*--
 * connectsock – allocate & connect a socket using TCP or UDP

 --/

int connectsock(const char *host, const char *service, const char
*transport)

/* host - name of host to which connection is desired

 service - service associated with the desired port

 transport - name of transport protocol to use (“tcp” or “udp”) */

{

 struct hostent *phe; /* pointer to host information entry */

 struct servent *pse ; /* pointer to service information entry */

 struct protoent *ppe; /* pointer to protocol information entry */

 struct sockaddr_in sin; /* an Internet endpoint address */

 int sd, Type; /* socket descriptor and socket type */

 memset(&sin, 0, sizeof(sin)); /* clean up */

 sin.sin_family = AF_INET; /* address family: Internet */

50

/* Map service name to port number */
 if (pse = getservbyname(service, transport))

 sin.sin_port = pse -> s_port;

 else if ((sin.sin_port = htons((unsigned short)atoi(service))) == 0)

 errexit(“can’t get \ “%s\” service entry\n”, service);

/* Map host name to IP address, allowing for dotted decimal */

 if (phe = gethostbyname(host))

 memcpy(&sin.sin_addr, phe->h_addr, phe->h_length);

 else if ((sin.sin_addr.s_addr=inet_addr(host)) == INADDR_NONE)

 errexit(“can’t get \ “%s\” host entry\n”, host);

/* Map transport protocol name to protocol number */

 if ((ppe = getprotobyname(transport)) == 0)

 errexit(“can’t get \ “%s\” protocol entry\n”, transport);

/* Use protocol to choose a socket type */

 if(strcmp(transport, “udp”) == 0)

 type = SOCK_DGRAM;

 else

 type = SOCK_STREAM;

51

 /* Allocate a socket */

 sd = socket(PF_INET, type, ppr->p_proto);

 if (sd < 0)

 errexit(“can’t create socket: %s\n”, strerror(errno));

/* Connect the socket */

 if (connect(sd, (struct sockaddr *)&sin, sizeof(sin)) < 0)

 errexit(“can’t connect to %s.%s: %s\n” , host, service ,

 strerror(errno));

 return sd;

}

52

Algorithms for TCP Server
Software Design

53

Server architecture

 Create a socket

 Bind the socket to a
well-known port to
receive requests

 Enter an infinite loop to
accept the next request
from clients

 Process the request

 Formulate a reply

 Send reply back

 SERVER SIDE

socket

bind

listen

accept

recv

send

close

54

bind()

 sockddr_in – IP address and port number

 getportbyname

 Used by a server to map a service name into the

corresponding well-known port number

 INADDR_ANY (a socket interface constant)

 To allow a multi-homed hosts and routers to have

a single server accept incoming communication

addressed to any of the hosts’s IP addresses

 SERVER SIDE

socket

bind

listen

accept

recv

send

close

55

listen()

 It has an input argument – specifying the

length of an internal request queue for

the socket

 Each incoming “TCP connection request”

 Place the socket in passive mode

 SERVER SIDE

socket

bind

listen

accept

recv

send

close

56

accept()

 It obtains the next incoming connection
request (i.e., extract the request from the
request queue)

 It returns a socket descriptor to be
used for the new connection.

 Once accepted the connection, use recv()
(read()) to obtain application protocol
requests from the client

 Use send() (write()) to send replies back.

 Use close() to release the socket

 SERVER SIDE

socket

bind

listen

accept

recv

send

close

57

Server architecture: concurrent
vs. iterative

Iterative server

 Process one request at a time

Concurrent server

 Handle multiple requests at one time, i.e.,

permitting multiple requests to proceed

concurrently

Multiple threads of execution

 Each thread handles one request

58

Four types of servers

Iterative

connectionless

Iterative

connection-
oriented

Concurrent

connectionless

Concurrent

connection-
oriented

Low

Request

Processing time

59

Iterative connectionless

Client

 connect() – to specify a
server’s address

 write() – to send data
(internal data structure
contains both two endpoints
address)

Server

 recvfrom()

 Server uses to receive the
sender’s address

 retcode = recvfrom(s, buf, len,
flags, from, fromlen);

 Uses an unconnected socket

 sendto() to specify both a
datagram to be sent and an
address to which it goes.

 retcode = sendto(s, message,
len, flags, toaddr, toaddrlen);

 s: unconnected socket

 Generates reply addresses
explicitly use

60

Four types of servers

Iterative

connectionless

Iterative

connection-
oriented

Concurrent

connectionless

Concurrent

connection-
oriented

Low

Request

Processing time

61

Concurrent Sever: Goals

Provide faster response times to multiple

clients

Suitable for applications that

 form a response required significant I/O

 diverse processing times

 server executed on a multi-processor computer

62

Concurrent sever: Using separate
process

 A master server process
begins execution initially

 Master opens a socket at the
well-known port

 Wait for the next request

 Create a slave server
process to handle each
request

 A slave process exits when
complete the
communication with the
client

 A concurrent server creates
a new process for each
connection.

 fork() – a system call

 Both master and slave
processes execute the same
code.

 execve() – have the slave
process execute an
independently written code
after the call to fork.

#include <unistd.h>

int execve(const char *filename, char *const argv[], char *const envp[]); // executes program pointed to by filename.

http://linux.die.net/include/unistd.h

63

The Process Structure

Master

socket used for

conn. requests

socket used for

an individual

conn.

Internet
client

client

client

client

Operating

System

Server

Application

Process slave1 slave2 slaven

…

Asynchronous Socket Programming
(1/3)

 Synchronous: handle one request at a time, each in

turn
 pros: simple

 cons: any one request can hold up all the other request

 Asynchronous/Event-driven programming

 Fork : start a new process to handle each request

 pros: easy

 does not scale well, hundreds of connections

means hundreds of process

64

65

Concurrent
Connection-Oriented Server Algorithm:

using separate process

 Master
 step 1: Create a socket and bind to the well-known address for the

service being offered

 step 2: Place the socket in passive mode, making it ready for use by a
server

 step 3: Repeatedly call accept to receive the next connection request
from the client, and create a new slave process to handle the response.

 Slave
 step 1: receive a connection request upon creation

 step 2: interact with the client using the connection: read requests
and send back replies

 step 3: close the connection and exit.

Asynchronous Socket Programming
(2/3)

 In many OSs, process creation and context switching are
expensive

 Threads: start a new thread to handle each request

 pros:

• easy

• kinder to the kernel than using fork, since threads usually
have much less overhead

 cons:

• local host machine needs to support threads;

• threaded programming can get very complicated very fast,
with worries about controlling access to shared resources

66

Concurrent sever: using thread
worker pool

67

Browser

Web Client

Web Server

Web Container

servlet

Service

doGet

doPost

myProc

JSP

HTTP

Response

<HTML>

HTTP

GET/POST

Request

Application Server

EJB Container

Session Bean

…

Entity

Bean

Entity

Bean

Entity

Bean

Control

DB

process

Thread

function

…

The Programming architecture of a J2EE-based web

application

Internal structure of a typical Web
container

 An active thread is designated
as Connector to

1. Receive requests from
clients.

2. Forward requests to Engine

3. Return the results to the
requesting client

 An active thread is designated
as the host as the thread
controller to

1. Allocate an idle active
thread in the thread pool to
initialize specific servlet.

2. Create additional thread to
“compensate” Spare Thread
if current spare thread is
lower than
minSpareThreads.

3. If the total number of active
Threads reaches the
maxThread, then pend the
request to Queue.

68

javaw.exe

(in Windows)

Threads (fixed)

Connector

Engine

Host

Servlets
(Spare

Threads)

(Default: 4)

Servlets

(Depends on demand)

(Default maximum: 200)

Threads (dynamically

created)

Queue

(Default maximum length:

10)

(1) Requests

are received at

the listening

port

(2) Forward

requests to

Engine

(3) Return

response to

the client

Web container - Host
 When servlet returns the response

message, the execution terminates
and the executing thread returns to
the pool with the state marked as
spare.

 If spare threads exceed
maxSpareThreads, then host will
destroy unnecessary spare Thread.

 Attribute:
 maxThreads

 maxSpareThreads

 minSpareThreads

 Queue:
 Function

• Drop the request if queue is full.

 Attribute:
• Maximum queue length

69

javaw.exe

(in Windows)
Threads (fixed)

Connector

Engine

Host

Servlets
(Spare

Threads)

(Default: 4)

Servlets

(Default maximum:

200)

Threads

(created on-demand)

Queue

(Default maximum length:

10)

Dispatch

request to

specific

servlet

Return response

to connector and

become a spare

thread

Queue the

request if

all thread

are busy

Figure 5

Model of a typical J2EE web
application

70

Connector: request

dispatcher

Host: thread

controller

Queue

Thread pool: Used to

run servlet or JSP

TCP Call: defined by

programmer

Process

Web container EJB container
Process

Thread pool: Used to

run Session Bean or

Entity Bean

HTTP Request

HTTP Response

DB

Asynchronous Socket Programming
(3/3)

 select()/poll() – based

 Pros:
• efficient and elegant

• scale well

• require no interlocking for access to shared resource

• integrates easily with event-driven window-system programming.

 Cons:

• more complex

• require a fundamentally different approach to programming that

can be confusing at first

71

72

Passive TCP: sample code (1/7)

/* passiveTCP.c - passiveTCP - create a passive socket for
use in a TCP server */

int passivesock(const char *service, const char *transport,
int qlen);

int passiveTCP(const char *service, int qlen)

/* service - service associated with the desired port
 * qlen - maximum server request queue length */
{
 return passivesock(service, "tcp", qlen);
}

73

Passive TCP: sample code (2/7)

/* passivesock.c - passivesock */

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <stdlib.h>

#include <string.h>

#include <netdb.h>

extern int errno;

int errexit(const char *format, ...);

u_short portbase = 0; // port base, for non-root servers

74

Passive TCP: sample code (3/7)

/*---*
passivesock –

 allocate & bind a server socket using TCP or UDP

 ---/
int passivesock(const char *service,
 const char *transport, int qlen)
/*
 * Arguments:
 * service - service associated with the desired port
 * transport - transport protocol to use ("tcp" or "udp")
 * qlen - maximum server request queue length
 */

75

Passive TCP: sample code (4/7)

{

 struct servent *pse;

 /* pointer to service information entry */

 struct protoent *ppe;

 /* pointer to protocol information entry */

 struct sockaddr_in sin;

 /* an Internet endpoint address */

 int s, type;

 /* socket descriptor and socket type */

1. memset(&sin, 0, sizeof(sin));

2. sin.sin_family = AF_INET;

3. sin.sin_addr.s_addr = INADDR_ANY;

76

Passive TCP: sample code (5/7)

 /* Map service name to port number */
4. if (pse = getservbyname(service, transport))

5. sin.sin_port = htons(ntohs((u_short)pse->s_port)
 + portbase);

6. else if ((sin.sin_port = htons((u_short)atoi(service)))
 == 0)

7. errexit("can't get \"%s\" service entry\n", service);

 /* Map protocol name to protocol number */

8. if ((ppe = getprotobyname(transport)) == 0)

9. errexit("can't get \"%s\" protocol entry\n", transport);

77

Passive TCP: sample code (6/7)

 /* Use protocol to choose a socket type */

10. if (strcmp(transport, "udp") == 0)

11. type = SOCK_DGRAM;

12. else type = SOCK_STREAM;

/* Allocate a socket */

13. s = socket(PF_INET, type, ppe->p_proto);

14. if (s < 0)

 errexit("can't create socket: %s\n", strerror(errno));

78

Passive TCP: sample code (7/7)

 /* Bind the socket */

15. if (bind(s, (struct sockaddr *)&sin, sizeof(sin)) < 0)
 errexit("can't bind to %s port: %s\n", service,
 strerror(errno));

16. if (type == SOCK_STREAM && listen(s, qlen) < 0)
 errexit("can't listen on %s port: %s\n", service,
 strerror(errno));

17. return s;

}

79

Appendix

80

Generic address structure (1/3)

Generic address structure

 The goal is to allow a software to manipulate protocol
addresses without knowing the details of how every
protocol family defines its address representation.

 e.g.,

• a procedure that accepts an arbitrary protocol endpoint spec as an
argument

• Choose one of several possible actions depending on the address
type

 (address family, endpoint address in the family)
• A constant denotes a predefined address types

• The representation for the specified address type.

81

Generic address structure (2/3)

To keep programs portable and maintainable,

TCP/IP code should not use the sockaddr

structure in declarations

It can be used only as an overlay.

The code should reference only the sa_family

field.

82

Generic address structure (3/3)

/* used for declaring variables to store endpoint

address

struct sockaddr { /* struct to hold an address */

 u_char sa_len; /* total length */

 u_short sa_family; /* type of address */

 char sa_data[14]; /* value of address */

};

83

Network byte order

Networks generally use big-endian order

The Internet Protocol defines a standard big-
endian network byte order for sending
information over a network in a common
format.

This byte order is used for all numeric values
in the packet headers and by many higher level
protocols and file formats that are designed for
use over IP.

http://en.wikipedia.org/wiki/Internet_Protocol

84

Network byte order

 The Berkeley sockets API defines a set of functions
to convert 16- and 32-bit integers to and from
network byte order:

 from machine (host) to network order
 htonl (host-to-network-long) (32-bit)

 htons (host-to-network-short) (16-bit)

 from network to host order.
 ntohl (32-bit)

 ntohs (16-bit)

 All the layers above them usually consider byte (octet)
as the atomic unit.

http://en.wikipedia.org/wiki/Berkeley_sockets
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Octet_(computing)

